На связи агентство Original Works. В этой статье мы расскажем, как совместно с командой заказчика помогли ему существенно снизить ежемесячные рекламные расходы, сохранив при этом выручку. Одновременно с этим нам удалось оптимизировать систему KPI и наладить процессы отчетности и планирования в компании клиента.
В октябре 2021 года к нам обратился представитель сети автосалонов в Санкт-Петербурге с запросом о внедрении сквозной аналитики. Сама задача была сформулирована так – нам нужно посчитать лиды по всем источникам и в том числе в разрезе автосалонов, рентабельность каналов, стоимость заявки, а также оценить эффективность действующих подрядчиков, отвечающих за интернет-рекламу.
Первый этап решения подобных задач всегда требует глубокого погружения в существующие бизнес-процессы заказчика. Наш опыт подсказывает, что если недостаточно ответственно отнестись к этому этапу, то практически невозможно будет построить стабильную систему аналитики за приемлемое время. Клиент также понимал это и в ходе обсуждения проекта решил привлечь к работе двух специалистов из своей команды.
Разбираться в ситуации компании нам помогали внешний консультант клиента Иван Куц – эксперт по маркетингу и цифровой трансформации в автомобильной отрасли – и руководитель отдела маркетинга компании заказчика. Иван провел детальный анализ бизнес-процессов компании, руководитель отдела маркетинга изучил и сформулировал ключевые требования к системе аналитики от высшего менеджмента компании и лиц принимающих решения, а также разработал прототипы необходимой отчетности.
В результате мы узнали, что текущие процессы оценки качества рекламного трафика построены не оптимальным образом:
Иными словами, текущая система, которая была внедрена в компании, не давала валидные данные. Как следствие, у менеджмента не было уверенности в том, что рекламный бюджет используется эффективно, непонятно было, на какие цифры опираться, как их анализировать и как с ними работать.
Поэтому клиент хотел, чтобы мы построили ПРОЗРАЧНУЮ систему аналитики и отчетов, которая будет работать сама, без стороннего вмешательства.
На момент внедрения системы клиент использовал следующие каналы продаж и инструменты:
АТС Mango выполняет распределение звонков между менеджерами и автосалонами. Calltouch используется для учета источников звонков, приходящих со всех видов рекламы и каналов продаж.
В первоначальной системе отчетов заказчика не были отражены расходы, они попросту терялись. Бюджет тратился, а посчитать эффективность рекламы было невозможно. Поэтому и возникла идея внедрения сквозной аналитики.
При постановке задачи мы должны были учесть пожелания всех заинтересованных сторон в компании.
Собственникам и генеральному директору компании было важно в первую очередь понимать, какие рекламные каналы задействованы, какие суммы рекламного бюджета затрачены и какая конверсия на каждом этапе, т.е. получать данные, на основе которых можно будет принимать бизнес-решения.
Директор дилерского центра хотел получать достаточно подробную информацию об эффективности источников рекламы и конверсии сайтов.
Руководителю отдела маркетинга нужен был понятный инструмент для принятия оперативных решений и выстраивания диалога с отделом продаж и менеджментом компании на одном с ними языке.
PPC-специалистам необходима была детальная информация по рекламным кампаниям: по какому запросу пришел лид и как он дошел/не дошел до продажи.
До сотрудничества с нами в компании клиента не была выстроена система KPI для специалистов по платному трафику. А значит, они не понимали, какое влияние оказывают на продажи и оказывают ли его в принципе, что могло снижать их эффективность. Другими словами, PPC-специалисты могли гнать определенный объем трафика без учета его релевантности, при этом сливая клиентский бюджет. Они ориентировались на общий объем лидов, в надежде, что чем больше будет трафик, тем больше будет шансов на продажу.
Поэтому клиенту важно было понять, какой из специалистов по настройке контекстной рекламы работает эффективнее с точки зрения лидов и продаж, и выстроить четкие KPI для специалистов.
Совместными усилиями с командой клиента мы сформулировали такую задачу – разработать и внедрить систему сквозной аналитики и отчетности с целью систематизировать ряд процессов, связанных с планированием и учетом трафика, и выстроить систему мотивации для специалистов.
Перед стартом проектирования клиенту были продемонстрированы варианты отчетов, собранные в Power BI, которые ранее использовались для клиентов из аналогичной отрасли. Однако, заказчика не совсем устраивал внешний вид стандартных визуальных компонентов (дашбордов и таблиц), которые есть в Power BI. По мнению клиента, они выглядят несколько топорно, а хотелось, чтобы система отчетов визуально соответствовала уровню современных маркетинговых аналитических систем. Также необходимо было, чтобы интерфейс и отчеты были созданы под определенные бизнес-процессы компании. Т.е. важно было сделать так, чтобы любой человек, даже который не умеет читать отчеты, мог чётко видеть нужные ему показатели. Например, на собрании с топ-менеджментом компании можно было бы показать такой отчет, и он был бы понятен всем участникам встречи.
В процессе работы перечень инструментов немного изменился, но первоначально был таким:
Базы данных
Microsoft Azure SQL Database: изначально для хранения расходов из Я.Директа и Google Ads (до его отключения), данных о звонках из Calltouch, данных из Google-таблиц. Сейчас используется только для хранения данных из Calltouch и Google-таблиц.
Google Big Query: для хранения расходов из Я.Директа и Google Ads (до его отключения). Начали использовать после замены коннектора MY BI на OWOX.
Коннекторы
MY BI: изначально для выгрузки расходов и звонков из Calltouch и данных из Google-таблиц в Microsoft Azure SQL Database. Сейчас используется только для выгрузки данных из Calltouch и Google-таблиц.
OWOX: для выгрузки данных из Я.Директа в Google Big Query.
BI сервисы
Microsoft Power BI: для визуализации данных в отчеты выбрали этот сервис, т.к. он обладает достаточно широким функционалом и при этом устраивает клиента по цене.
1 этап. Выгрузка данных по расходам и звонкам
На первом этапе работ нам предстояло вывести данные по расходам из Я.Директа и Google Ads и звонки из Calltouch в базу Microsoft Azure SQL Database. Для этого мы использовали коннектор MY BI. Затем мы соединили клики со звонками, чтобы понять, по какой именно кампании/объявлению/ключевому слову был звонок. Это делается с помощью utm-метки - общего поля, имеющегося в обеих таблицах.
Также мы создали справочники – таблицы, которые соединяют разные элементы воедино. Они предназначены для фильтрации нужных нам данных, например, к какому автосалону относится тот или иной сайт, и отслеживания всей воронки продаж: от конкретной рекламной кампании до продажи.
2 этап. Сведение данных в единый отчет
На втором этапе нам необходимо было свести данные:
из собственной CRM-системы колл-центра и Google-таблиц отдела продаж клиента в один отчет. Для этого использовали коннектор My BI, который выгружал данные из этих источников в базу данных Microsoft Azure.
Также на этом этапе мы разработали модель атрибуции. У заказчика довольно много рекламных каналов (множество сайтов, Авито, Авто.ру, карты и др.) Один и тот же посетитель мог позвонить перед покупкой несколько раз с разных источников. В связи с чем постоянно возникал вопрос: “К какому касанию привязать продажу?” Простые варианты – первое и последнее касание – заказчика не устраивали. Необходимо было, чтобы продажа атрибуцировалась к контекстной рекламе, если она была в цепочке касаний, если нет, то к Авито, Авто.ру, если не было касаний с Авито, Авто.ру, то к органике, и т.д. То есть, нужна была система рангов. На основе ее мы и сделали модель атрибуции, которая теперь помогает клиенту определить, из какого источника пришел лид, совершивший покупку.
Работает это так. Всем источникам лидов (всем видам рекламы и каналов) был назначен ранг. Платным источникам (Я.Директ) были присвоены наивысшие ранги, бесплатным – наименьшие. Система автоматически связывает продажу с источником, который имеет наивысший ранг.
После того, как в Я.Директе появился Мастер кампаний, коннектор MY BI перестал выгружать часть данных, которые нам были нужны (названия рекламных кампаний), а вручную их заполнять было проблематично, так как кампаний создавалось очень много: под каждый лендинг, разными подрядчиками, под разные гипотезы. Поэтому решили заменить его на другой коннектор – OWOX. Соответственно для хранения данных о расходах мы стали использовать и другую базу – Google Big Query.
После начала специальной военной операции на Украине и блокировки различных зарубежных сервисов оплачивать многие из них стало проблематично, и мы решили создать свои коннекторы, более надежные и устойчивые к внешним факторам.
После настройки системы сквозной аналитики с учетом пожеланий всех заинтересованных сторон в компании заказчика мы создали несколько видов отчетов:
Внедрение системы заняло около 6 месяцев. Первая половина этого срока ушла на проектирование и техническую реализацию, начиная с четвертого месяца мы запустили первые отчеты, продолжая дорабатывать их в боевом режиме и добавлять новые по мере готовности. Такой подход позволил нам довольно быстро получить первые полезные для заказчика результаты.
Напомним, что главной целью было определение эффективности работы с рекламными источниками/каналами. Эта цель была достигнута. Ниже приводим список основных действий и решений, которые были приняты на основе построенной системы:
В завершении хотим поделиться выводами, которые мы и команда клиента сделали для себя по итогам совместной работы.
Команда агентства Original Works:
Команда заказчика:
Чтобы создать качественную систему отчетов важно использовать продуктовый подход к разработке, главная идея которого — постоянное тестирование решений и идей, стремление адаптировать их к потребностям пользователей. То есть нацеленность на бизнес-результаты, а не создание отчетов ради отчетов. Тогда руководство и команда заказчика будут вовлекаться в работу и максимально эффективно использовать систему в своих целях.