Проект демонстрирует успешное внедрение искусственного интеллекта в производственный процесс крупного промышленного предприятия, что дает возможность масштабировать данную практику, экспериментировать с построением различных моделей на основе нейронных сетей и реализовывать их в других компаниях.
Активное развитие информационных технологий запустило важный для бизнеса процесс – оптимизацию. Выполнение задач, которые раньше занимали несколько часов и делались специалистами вручную, теперь занимает всего несколько минут благодаря современному программному обеспечению. И если мы видим положительный результат такой автоматизации в небольших компаниях, представьте каковы его масштабы в рамках крупных производств. Да, зачастую промышленные предприятия с трудом соглашаются на внедрение новых технологий, а переходы с одной модели работы на другую требуют значительных ресурсов. Но и выгоды от автоматизации производственных процессов переоценить сложно:
Именно эти причины подтолкнули нашего клиента, крупный машиностроительный завод, к реализации проекта по автоматизации контроля качества сварных соединений (швов) на рамах тележек. Главная цель проекта – создание и внедрении универсальной роботизированной измерительной ячейки (РИЯ), которая самостоятельно контролирует качество сварки шва, исключая человеческий фактор, обнаруживает различные дефекты, готовит техническую документацию (паспорт) по каждому выпущенному изделию, а также собирает и хранит данные о возможных несоответствиях изделий установленным нормам.
Заказчик решил заменить текущую технологию, где проверку качества и соответствия изделия технической документации осуществлял человек (контролер), и подобрал для этого оптимальную модель – 3D-сканер с лазерным трекером. Данная технология измерения позволяет получить цифровой 3D-двойник готового изделия, контролировать его геометрические параметры, наличие приварных элементов и правильность их размещения.
Проектной команде Globus IT предстояло:
В рамках проекта была создана специализированная программа для разметки данных с использованием C# .Net и интерфейсом WinForms с подробной инструкцией по разметке данных. В качестве основы использовались около 12 000 фотографий, предоставленных РИЯ.
В процессе команда столкнулась с отсутствием достаточного количество данных, в связи с чем приходилось специально браковать изделия в рамках рабочего процесса и фиксировать случаи брака, накапливая необходимый «опыт».
Программа для обучения нейронных сетей создавалась на языке программирования Python 3.6 с использованием библиотек и инструментов TensorFlow 2, OpenCV и tensorboard. Нейронные сети разрабатывались вручную и предназначались для определения дефектов сварных соединений. Одной из сложностей, с которой столкнулась команда на данном этапе, стала необходимость создания сбалансированных и непересекающихся наборов данных (mini-batch).
Программа анализа данных на РИЯ была построена на языке программирования C# .Net с использованием TensorFlow .Net. А для обмена данными использовался протокол OPC через OPC UA SDK.
В итоге командой Globus IT было разработано комплексное программное обеспечение, которое обнаруживает дефекты сварного шва и автоматически определяет координаты этого дефекта, делает его фотографии и формирует отчет в режиме реального времени, а также веб-решение по формированию отчетов, интегрированное во внутреннюю информационную систему компании.
Подводя итоги, мы можем уверенно сказать, что автоматизация процесса обнаружения и фиксации дефектов сварных соединений дала устойчивый положительный результат: