Маркетинговые кампании с мгновенной отдачей — мечта маркетологов и даже реальность для простых товаров, которые можно купить спонтанно и в один клик. Но для сложных и дорогих продуктов такая ситуация — фантастика, и затраты на рекламу окупаются дольше. Как оценивать эффективность таких кампаний? Учитывать фактор времени и детализировать по нему ваших клиентов. Для этого существует когортный анализ, про который мы расскажем в статье.
Что такое когортный анализ
Когортный анализ — это метод исследования, где пользователей разделяют на группы (когорты) по определённым признакам и отслеживают их поведение за некоторый промежуток времени. Такой способ позволяет смотреть на действия пользователей в динамике.
Когорта — это группа людей, которых объединяет один или несколько признаков:
Именно привязка ко времени отличает когорту от сегмента — более широкого и общего понятия.
Например, выпускники Гарварда 2012 года — одна когорта, выпускники 2018 года — другая, но все они относятся к сегменту «выпускники Гарварда».
По действиям когорты делят на два типа:
Когортный метод учитывает следующие признаки для анализа:
Когортные исследования помогают понять, как ключевые метрики отличаются для разных сегментов. Увидеть более подробную картину по рекламной кампании или другим маркетинговым действиям, например, ребрендинга, тестирования нового сайта и так далее.
Как применять когортный анализ
Когортное исследование — не универсальный метод, для него нужно достаточное количество пользователей. Желательно проводить анализ клиентов от 1000 человек в базе (их действий). Способ подходит для массовых B2C и B2B бизнесов с долгим циклом покупки.
Что помогает оценить когортный анализ:
Эффективность каналов привлечения
Когортный метод покажет, из каких каналов приходят наиболее лояльные пользователи. Тогда бизнес сможет выделять больший бюджет на эффективные каналы и активнее с ними работать. Зачем использовать именно когортный метод, если можно сразу после кампании оценить, сколько клиентов мы получили? Не всё так просто.
Например, с рекламы в Facebook в сервис перешло и зарегистрировалось 2000 пользователей. Маркетолог доволен — результат есть. Но 90% пользователей перестали заходить в сервис уже через месяц. Параллельно мы привлекали пользователей с помощью рассылки, и пришло 1000 человек, через месяц перестали пользоваться сервисом всего 15%. Если бы мы оценивали результат сразу после кампании, то решили бы, что Facebook — самый эффективный канал, а на самом деле там оказалась нецелевая аудитория.
ROI
Для долгого цикла покупки возврат инвестиций в рекламу — дело не быстрое. В крупных B2B сделках, в недвижимости, для электронных сервисов, которые могут трансформировать весь бизнес, принять решение о покупке нельзя сразу после первой рекламы. Надо набраться терпения и смотреть результаты через некоторое время.
Например, рекламная кампания прошла в январе, тогда пользователь K впервые узнал про сервис Altcraft Platform и впервые зашёл на сайт. Для изучения возможностей и принятия решений в компании, где работает пользователь K, нужно время. Только через 4 месяца пользователь запросил демо у команды сервиса, а через 5 компании подписали договор. Если бы мы считали ROI за следующий месяц после кампании, то решили бы, что она провальная. Когортный анализ показал, что это не так.
LTV (пожизненная ценность клиента) считает доход от клиента за весь период, пока он пользуется нашими продуктами или услугами. Метрика показывает, оправдывают ли себя расходы на привлечение новых клиентов. Когда мы знаем, как долго остаётся с нами пользователь и сколько на нас тратит, то можем рассчитать эти данные для похожих когорт.
Результаты тестирования
Когортный анализ покажет, как поменяется конверсия после обновлений для А/Б-тестов не за время тестирования, а в долгой перспективе. Может оказаться, что удачный элемент привлёк больше пользователей, но они не совсем целевые: случайно кликнули, прошли регистрацию, но не стали использовать сервис.
Когортное исследование поможет узнать, через какое время клиент перестаёт активно пользоваться продуктом или вообще уходит. Предупреждён — вооружён: с данными о «критических» точках можно заранее поработать с пользователем.
Например, анализ показал, что 70% пользователей теряют интерес к сервису через 3 месяца. Тогда компании нужно обратить внимание на этот период: сделать рассылку с реактивацией, предложить бонус и так далее.
Как провести когортный анализ
1. Определяем цель и связанную с ней метрику, которую будем отслеживать за время анализа. Метрики — это основа для когортного анализа.
Пример:
Цель — определить самый успешный канал продаж для мобильного приложения.
Метрикой считаем конверсию — регистрацию. В перспективе рассматриваем, как менялся Retention Rate (коэффициент удержания клиентов), чтобы понять, сколько из зарегистрированных пользователей остались в приложении.
2. Определяем когорты, которые будем изучать.
Возьмём клиентов, которые совершили покупку с рекламы в Instagram, Facebook, рекламы в Яндексе и Google за июнь — это 4 разные когорты.
3. Проводим анализ разных когорт за выбранный промежуток времени.
Рассмотрим результат всех четырех когорт за 3 месяца после месяца регистрации. Оценим, сколько пользователей оставались активными после регистрации в каждый из месяцев.
Когортный анализ проводят в Google Таблицы или Microsoft Excel. Но разбираться, как сделать метрику правильно (формулу для её расчёта) в таблице, придётся самостоятельно. В Google Аналитике когортное исследование автоматизировано, но возможности для разделения на когорты ограничены: можно отследить только первое действие пользователя в определённом промежутке времени.
Более детально и наглядно проводить когортный анализ умеют платформы автоматизации маркетинга. В Altcraft Platform когортный анализ доступен для когорт пользователей, которые совершили действие за неделю или месяц. Рассматривать активность пользователей в отчёте можно по:
Данные визуализируются в виде графика и таблицы.
Разберём несколько примером когортного анализа для разных метрик.
Проверка эффективности каналов
Цель — определить, какой канал оказался самым эффективным для привлечения новых подписчиков рассылки. Будем исследовать 4 когорты по каналам привлечения: окно на сайте, реклама в Facebook, партнёрские посты ВКонтаке. Каждая когорта рассчитывается с 15-30 марта — срок проведения кампании. Со всех каналов на рассылку подписалось 3000 пользователей. Больше всего пользователей (1600) пришли с рекламы Facebook. Через 5 месяцев из всех подписавшихся активных осталось 782. Рассмотрим в динамике, как проходила отписка от каждого канала за этот срок.
По первым результатам мы могли сделать вывод, что реклама Facebook была самой эффективной в привлечении подписчиков. В итоге оказалось, что пользователям подписка неинтересна, или, возможно, они подписались случайно. Через 5 месяцев только 6% ещё открывали письма. Самую качественную аудиторию из всех привлекли партнёрские посты ВКонтакте, 58% подписчиков из этого канала продолжали читать рассылку.
Цель — определить LTV для пользователей, которые пришли в приложение для доставки продуктов на дом в 2020 году. Для этого рассматриваем 3 когорты — клиентов, которые сделали первый заказ в январе, феврале или марте 2020 года. Изучаем, как менялось их поведение в течение полугода. Для каждого посчитаем ARPU — средний доход с клиента. Рассчитываем сумму в рублях.
Нужно проанализировать результат теста дизайна нового раздела дополнительных заказов для интернет-магазина. Есть два новых дизайна A и B, также старый — Old. Выделим их в 3 когорты — по кликам пользователей на каждый из дизайнов неделю с 5 по 11 июля. Дальше рассмотрим конверсию с каждого дизайна за 3 следующих месяца.
В итоге дизайн A получил больше кликов за первую неделю, но показатели конверсии были ниже дизайнов B и Old. Также новый дизайн не показал значительного роста конверсии по сравнению со старым — можно сделать вывод, что концепция обоих новых дизайнов не самая удачная.
Когортный анализ — инструмент, который требует подготовки: долгого сбора данных, понимания, какую метрику надо исследовать сейчас, чтобы улучшить показатели бизнеса в будущем. Но затраты стоят результата — глубокого и подробного понимания маркетинга компании, правильного распределения бюджета и эффективных стратегий на основе данных.